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A Monte Carlo algorithm lor the evaluation of certain functional integrals is introduced. 

This algorithm is not based on the approximation of the functional integral by a finite-dimcn- 

sional integral. Unbiased estimators for the functional integrals arc constructed and 

corresponding variance reduction tcchniqucs are considered. Numerical results of simulation 

studies arc presented. 1 1987 Academic Press. Inc. 

1. ~NTROLHJCTION 

integration in function spaces is a powerful tool in many fields of mathematics 
and physics (cf. [ 10, 21, 26, 2, I, 41). Classical papers by Kac [ 17, 181 dealt with 
the probability distribution of certain functionals of the Wiener process. Connec- 
tions with the solution of a corresponding partial differential equation were found. 
For example. the solution of the generalized heat flow equation 

~u(I,~~)=~~u(I.x)+c(I)u(i,x), u(0: x) = 1, 

can be represented via the Feynman- Kac formula 

u( 1, x) = Eexp 
( 

[’ c(x + L+(S)) ds = 
> c 

F(Y) 4L(Y)> 
‘0 . (.‘ 

where (I, X)E [0, S) x R, w is the standard Wiener process, pu denotes the Wiener 
measure on the space C of continuous functions on [0, t], and 
F(y) := exp(l‘h c(x +y(s)) cls). 

Numerical methods for Wiener integrals and conditional Wiener integrals 
(related to the Brownian bridge) have been investigated in many papers (cf. [6. 14, 
15, 19, 13. 8, 25, 3, 51). All these methods are based on some approximation of the 
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functional integral by an integral over a finite-dimensional space. For instance, 
Chorin [S] constructed remarkably simple approximation formulas of the form 

xexp(-(u:+ ... +u;)/2)du,-du,+ O(n-2). 

The implementation of such numerical methods is connected with the evaluation of 
high-dimensional integrals. This is a field in which the Monte Carlo method can 
compete successfully with usual deterministic quadrature formulas. Gel’fand et al. 
114,151 were apparently the first to deal with the application of the Monte Carlo 
method to the evaluation of functional integrals, although a “suggestion to apply 
the Monte Carlo method” had already been made in [7]. Further work in this 
direction has been done in [19, 8, 9, 20, 25, 51. 

In this paper we present a Monte Carlo approach to the evaluation of functional 
integrals that is not based on their previous approximation by finite-dimensional 
integrals. Namely, we propose unbiased estimators for functional integrals of the 
form 

E exp (1.2) 

where X is a Markov process in the d-dimensional Euclidean space Rd with the 
initial condition X(0) = 0. The transition function Pt,( t, x, s, A), 0 < t < s < T < co, 
x E Rd, is assumed to be known explicitly and to be measurable in (t, x, s), for any 
Bore1 set A c Rd. The function c is supposed to be real-valued and measurable on 
[0, T]xRd. 

The application of the Monte Carlo method to the evaluation of functional 
integrals is usually connected to two main kinds of error. These are, on the one 
side, the systematic error resulting from the approximation of the functional 
integral by a finite-dimensional integral, and, on the other side, the statistical error 
arising from the evaluation of the mean value of the estimator for the finite-dimen- 
sional integral by taking the average over independent samples. Simulation studies 
in the literature (cf. [ 15, 19, 251) are to illustrate the convergence of the systematic 
error. But it is very difficult to separate the systematic error from the statistical 
error and to answer the question whether it is small enough, especially in real 
situations, when the exact value of the functional integral is not known in advance. 
Using unbiased estimators we avoid this problem since only the statistical error is 
involved. The statistical error can be estimated by means of confidence intervals 
during the process of computation. 

Our approach is based on a transformation of the functional integral into an 
integral over a countable union of finite-dimensional spaces. This transformation is 
performed in Section 2 (Proposition 1). Unbiased estimators for the functional 
integrals (1.2) are constructed in Section 3 (Proposition 3). The corresponding 
probability measures can be generated by means of appropriately chosen Markov 
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chains. The relation of these estimators to the von Neumann-UBam scheme for 
solving linear integral equations is discussed. Some variance reduction techniques 
are considered in Section 4. Results of simulation studies are presented in Section 5. 
Tn Section 6, we summarize some advantages of our unbiased estimation scheme. 
Finally, we discuss possible generalizations and directions for further study. 

2. BASIC PROPERTIES 

Let XJu) (0 <t 6 u < T-C co, x E R’, X,,, (t) = X) be a Markov family with the 
state space Rd and the transition function P,,(t, x, u, &). Further let c be a real- 
valued and measurable function on [O, T] x Rd. We consider the functionals 

Z(t, x) := Eexp (ji c(u, X,,(u)) du) 
I 12.1) 

and 

taking values from [0, + co 1. Further, we introduce the space Y= IJ,FZO Y,, where 
Y,=([O, T]xRd)“+l, n Z 0. The following proposition plays a major role in the 
construction of unbiased estimators for the functional integrals (2.1). 

PROPOSITION 1. Let (t, x) E [0, T] x Rd be fixed and suppose that Iu( t, x) < CC. 
Then 

(i) a finite signed measure v, .~ ( on Y can be defined via the formulas 

vt,,I yn(dto, dxo;...; dt,, dx,) = ht,,(dto, dxo) 

xlto,r,(tA c(t,> ~1) PAto, xo, tl, dx,) dt, 

x ... xx,,~~,,,,kz) c(t,, xn)Pt,(tn-1, x,-I, t,> dx,)dt,, 

where v,,,I r, denotes the restriction of vI,, to Y,,, n 20, 6,,-the measure concera- 
trated at the point (t, x), and XA-the indicator of a set A; 

(ii) I(6 xl = v,,,(Y); 
(iii) Z,(t, X) = (vJ( Y), where (v~,~ ( denotes the total variation of the measure 

V I,X’ 

Proof: First we expand the exponent of (2.1) in a power series. Under the 
assumption I,(& x) < co one can change the order of summation and integration so 
that 

Z(t, x) = 1 + ‘f -$ E (j-‘c(u, X,,,(u)) duj”. 
n=l . I 
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Using simple symmetry arguments and expressing the finite-dimensional dis- 
tributions of X,, via the transition function, we obtain 

x . . . x c(t,, X,,( t,))) dt, . . . dtl 

=nq’j~~--sT, s,A& II 

xc(tl,x1)Prr(t,x,tl,dxl) 

x ... xc(t,,x,)Pl,(t,_l,x,~l, t,,dx,)dt;..dt,. 

This yields (i) and (ii). Finally, we obtain (iii) from (ii) replacing the function c by 
its absolute value. This completes the proof. 

The following proposition states some auxiliary results concerning the functionals 
Z(t, x) and Z,(t, x). 

PROPOSITION 2. Let (t, x) E [0, T] x Rd be fixed and suppose that Z,(t, X) < co. 
Then 

6) W, 4 = ~,,,(UZ KJ + Irk Wk, 4 

dvt,,((to, Xo;...; tk, xk)) for any k = 1, 2,...; 

tii) zo(t2 x) = bl,xl(uk~ yn) + jyk zrr(tk? xk) 

dlv,,,I((to, x0;.-; tk, xk)), for any k = 1, 24 

(iii) Iv,,,l({(to, x0;...; t,,x,)EY,:ZO(tk,xk)=m})=O,foranyO<k<n. 

ProoJ: It follows from Proposition l(iii) that 

for any k = 1, 2,.... The second term can be transformed into 

s d bz,,l((to, xo;...; 
yk 

tk, Xk)) 2 j LqWo> 4,) 
[ n-0 yn 

xxcuo, r,(ul) Ic(u,,~,)l PtAuo,yo, ~1, dy,) du, 

x ... XX[,_,, T] (4 IC(G y,)l Ptr(u,-1, yn-1, u,, dy,) dun 
I 
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and is finite because of the condition Z,(t, x) < co. Consequently, the term in 
brackets is finite almost surely with respect to Ivt,J on Yk, and can be replaced by 
Za(tk, xk) according to Proposition l(iii). Thus, assertion (ii) follows. To prove (if, 
one proceeds in a similar way using Proposition l(ii) and the fact that Z,(& X) is a 
majorant for Z(t, x). 

Now, let 0 d k d n be fixed. We can write 

=j 4v,,,l((to,xo;...; t,> xk)) j h,, .xk(duo, &a! 
zk yn-k 

’ ..’ ’ x[U,-km,,T,( 4-k) IC(Lk, Ya-k)l 

Xf’tr(~-,>Yn-k-11, Un-k,dYn-k)du,,-k > 
I 

where Z,= ((to, x0;...; t,, xk) E Y, : I,( tk, xk) = cc ). The function in brackets is 
integrable on Y, since 

[“. 1 dlvt,.~I((to,xo;...; tk,Xk))= b,,,i(y,,)< a, 
yk 

because of I,(& X) < co. Further, we observe from (ii) that iv,,,l(Z,) =O. Thus, 
assertion (iii) follows, which completes the proof. 

3. UNBIASED ESTIMATORS 

We denote, for simplicity, X : =Xo,o, v := Y~,~, and assume 

Z,(O, 0) = Eexp j’ lc(u, X(U))/ du 
( 1 

< a. 13.1) 
0 

Proposition 1 enables us to construct a large variety of unbiased estimators for the 
functional integral Z(0, 0) = E exp(j,T c(u, X(u)) du). The following assertions are 
immediate consequences of Proposition 1 and well-known results from the Monte 
Carlo integration theory (cf. [ 11, Chap. 41 or [24, Chap. 41). 

PROPOSITION 3. Let ,u be a probability measure on Y such that the 
Radon-Nikodym derivative dvldp exists. (3.2) 

Let the estimator 5 be defined on (Y, p) via 

e(Y)=;(Y). 
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Then 

(i) E<:=f,4(~~)dp(y)=I(O,O), 

(ii) El51 = IJO, 01, 
(iii) D{ := Et’ - (Et)* 3 IJO, O)* -I(O, 0)2, 

(iv) DiJ = IJO, 0)” - I(0, 0)’ iff p = /vl/I,(O, 0). 

A suitable way to define probability measures on Y is to use a Markov chain 
with an absorbing state. Let the chain start in (0,O) at time zero. Consider now the 
chain being in (tkr xk) at time k. Then it either will be absorbed (i.e., pass to the 
absorbing state) with probability po(t,, xkj or will pass to the next state 
(f k + r ) -‘ck + r ) according to a transition function P( t,, x,; dt, ~~, ) dsk + r ). This 
Markov chain has paths of the form (0,O; t, , x, ;... ; t,, x,), where II is the random 
absorption time, which we also call the length of the path. We assume that this ran- 
dom length of the trajectories is a.s. finite. Then the Markov chain generates the 
following probability measure ~1 on Y, 

PI u,,(dto, dx,;...; dt,,, d-~,,j=&,.o(dto, d-x,)(1 -po(jo, -‘cd) 

xP(t,,~~“;dt,,d,~,)...(l-p,(t,,~,,x,~,j) 

x 0 t,, ~ , , x, ~ 1; dt,, , d-x,, j zdt,, -y,, 1. (3.4) 

Condition (3.2) is valid if the Radon-Nikodym derivative 

xc,. r,b) c(u, Y) P,,(t, -x, 24, dy) du 
a(t’x’u7J’):= (l-po(t,,x))P(t,x;du,dy) 

exists, (3.5) 

for any (t, xj E [0, T] x Rd, and 

Po(t, *x)>O for any (t, x) E [0, T] x Rd. (3.6) 

In this case the estimator (3.3) takes the form 

5,((0,0; t,, x1;...; tn,X,,j)=C((O,O;tlrXIj 
x ..’ x at,, - I ? x,, - L ; t,, > x, VPcd t, 2 -x, 1. (3.7) 

The estimator (3.7) is well known from the usual Monte Carlo scheme for solving 
linear integral equations. This scheme is due to von Neumann and Ulam and was 
used originally for solving large systems of linear algebraic equations. Later it has 
been applied to neutron transport problems and in other fields (cf., e.g., 
[ll, Chap. 61, or [16]). 

We obtain from Proposition 2(i), k= 1, that Z(t, x) satisfies the integral equation 

r(t, X) = 1 + i’s,<, I(u, J’) ~(24, y) P,,(t, x, u, dy) du, I 
(3.8) 
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for any (t, X) E [0, T] x Rd such that I,(& x) < cc’. Further, Proposition l(ii) yields 
that Z(t, x) is the pointwise limit of the successive approximations for Eq. (3.8). 
Similar facts were used in the classical papers by Kac [17, 181 and Cameron [‘?I to 
establish the Feynman-Kac formula (1.1). The paper [7] even contains the 
suggestion to use such series representations for the numerical evaluation of Wiener 
integrals, with a possible application of the Monte Carlo method. However, further 

development of numerical methods for functional integrals went on into other 
directions. 

We did not use the connection between the functional integrals (2.1) and Eq. 
(3.8) explicitly in order to keep our assumptions as weak as possible. Namely, we 
avoided assumptions concerning the norm of the integral operator in (3.8), which 
are usually made in the von Neumann-Ulam scheme. They would be difficult ro 
satisfy, if the function c is unbounded. 

In simulation studies (Sect. 5) we will also use another unbiased estimator knowa 
from the von Neumann-Ulam scheme. Let p be given via (3.4), and let p0 and P be 
such that (3.5) and (3.6) hold. Then, the second estimator is defined on (Ii, ;i) via 
the formula 

l;_‘z((O, 0; t,, xl:...; I,, s,,)) = 1 + i r(0, 0; I [ ~ ‘1) 
k=l 

4. VARIANCE REDUCTION 

A major problem in the Monte Carlo integration theory is the construction of 
estimators with a smallest possible variance. Many general variance reduction 
techniques are known (cf. [ll, Chap. 41, or [24: Chap. 41). In the case of the 
estimators (3.3) variance reduction can be performed by an appropriate choice of 
the probability measure p. This procedure is known as “importance sampling.” lin 
Proposition 3(iv) the optimal probability measure is given. Fortunately, it can be 
generated by a Markov chain. 

PROPOSITION 4. Consider a Markov chairs \c,ith the yrtate space 
I,(& X)E [IO, T] x R”: I, t. A < ‘x } starting in (0, 0). Let the tranrition pararweters be ( -) 

Then the chain generates the probabilitll measure ivi/I,(O, 0) on Y. 
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ProoJ Substitution of the parameters (4.1) into (3.4) shows that p has the 
expected form on 

But the complement of this set has the 1 vi-measure zero according to 
Proposition 2(iii). 

However, the optimal parameters are available only in simple cases, in which 
I,( t, x) is known explicitly. Consider the case 

Ic(t,x)I =y>o for any (t, X) E [0, T] x Rd. (4.2) 

Then Z,(t, x)=exp(y(T- t)), and we can write the optimal parameters (4.1) 

potty x) = exp( --Y(T- t)), (4.3) 

ptt x. du &) = XCI. u(u) Y exp(y(T- u)) p tt r u, @) n 3-f 7 
exp(y( T- t)) - 1 tr ’ ’ ’ 

Il. (4.4) 

The mean length of the trajectories of the corresponding Markov chain can be com- 
puted to be yT. Note that the functional integral I(0, 0) itself is unknown in the case 
(4.2) if the function c takes both values 7 and -7. 

Now we consider the parameters (4.3), (4.4) in the general case. We find 

Therefore, the estimator (3.7) takes the simple form 

51((0,0; 11, XI ;-; t,,, x,~)) = exp(yT) ~~“c(t,, xi) 

x . . . x C(f,?, x,). (4.5) 

The second moment of the estimator (4.5) can be computed via Proposition 3(i). 
We obtain 

Et: = exp(yT) E exp 

and are able to give a priori estimates for the statistical error. 
The theoretical expressions (4.1) for the optimal parameters can be used as an 

orientation for choosing the parameters of the Markov chain. The shape of the 
function c has to be taken into account, some information about the behaviour of 
1, can be used, etc. Illustrative examples will follow in Section 5. 

However, “importance sampling” can be considered as an appropriate variance 
reduction technique only if the optimal variance is zero. This holds if the function c 
is positive. However, in the case c(t, X) = --y < 0, for any (t, x) E [0, T] x Rd, 
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we know from Proposition 3(iv) that the optimal variance equals 
exp(2yT) - exp( - 2yT). This expression can be arbitraryly large. Kence, “impor- 
tance sampling” fails and other variance reduction techniques are needed. In 
Section 5 (Example 1) we use the following simple procedure. The estimators are 
constructed for the auxiliary function 

c,(t, x) := c(t, x) + cg, (4.5) 

and then multiplied by the factor exp( - c0 T) in order to correspond to the original 
integral. For a positive function c, , the optimal variance available by means of 
“importance sampling” becomes zero again. 

5. SIMULATION STUDIES 

In this section we present a sample of results of a computational experiment per- 
formed with our method. The estimators (3.7) and (3.9) are used for the evaluation 
of three functional integrals of the form (1.2). In each case, various parameters p. 
and P are chosen in order to reduce the variance of the estimators and, by this, the 
statistical error made in the computation. Beside (4.3) and (4.4), we use the 
function 

exp( -(;I +s’)(r- t)), ;’ > o> (5.!,l 

as a probability of absorption and the appropriately normalized function 

Ic(u, y)i P,,(t, x, 24, dy) dzc f 5.2 ) 

as a transition function of the Markov chain. In the lirst example. we use the shift 
procedure with the parameter c0 mentioned at the end of Section 4 (cf. (4.6)). 

First we provide some technical details necessary for understanding the 
numerical results. The number of independent trajectories (w,) (j= l,..., II) of the 
Markov chain is n = 5000 in all examples. The empirical means 

are calculated simultaneously for the estimators 5, and t2 on the same trajectories. 
Confidence intervals are constructed in order to measure the statistical error 

made in the evaluation of the functional integral by the empirical means vi, The 
length of the confidence intervals is computed via the formulas 
6, := A(.s)(s:/n)“‘, i = 1, 2, where 3: := (l/n) c;= r <f(oi) - r$ are the empirical 
variances of the estimators and L(E), E E (0, l), is the solution of the equation 

(2/Tcj1i2 ix exp( -x2/2) d.x = E. 
Jj.i&) 
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TABLE I 

co PO P P Confidence intervals I 

0.0 (4.3) (4.4) 1.0 0.609 +/- 0.049 1.0 
0.630 +/- 0.018 

0.5 (4.3) (4.4) 0.5 0.643 +/- 0.018 0.5 
0.633 +/- 0.013 

1.0 (4.3) (5.2) 1.0 0.639 +,‘- 0.008 0.9 
0.645 +/- 0.008 

The confidence level E equals 0.1 in our tables, with l(O.1) = 1.6449, but the results 
can easily be transformed to other confidence levels. 

The efficiency of Monte Carlo algorithms depends not only on the variance of the 
estimators, but also on the mean length of the trajectories of the Markov chain. The 
empirical mean length I is also given in the tables. 

First we consider the functional integral Eexp( -lh xcO.= )(N,(.s)) Q’S), where 1 
denotes the indicator function and )V is the Wiener process having the transition 
density 

0 6 t < u d T, X, y E R. Its analytically calculated value is approximately 0.645 (cf. 
[ 18, 191). Our results are shown in Table I, where the column “confidence inter- 
vals” contains the values vi+/- hi, i= 1,2, corresponding to the estimators [r and 
tz, respectively. 

As a second example, we consider the functional integral Eexp(Jh N(S)’ ds) = 
1.360 (cf. [ 19, 251). 

Finally, we consider the functional integral Eexp(J’h ~z~~(s)~ Q’S) = 1.197, where u’~ 
is the Brownian bridge with the transition density 

pt,(t, x, u, y) = (2na)-“’ exp( - (JJ - .x( T- u)/( T- t))‘/2a), 

a = (T- u)(u - t)/( T- t), O<t<u<T,x,yER. 

TABLE II 

PO P ) Confidence intervals I 

(4.3) (4.4) 1.0 1.361 +I- 0.051 1.0 
1.371 +;- 0.052 

(4.3) (5.2) 1.0 1.338 +i’- 0.025 0.8 
1.346 +/- 0.011 

(5.1) (5.2) 0.3 1.357 +/- 0.010 0.3 
1.340 +/- 0.018 
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TABLE III 

PO P )! Confidence intervals ! 

(4.3) (4.4) 1.0 1.190 +/- 0.030 1.0 
1.202 +.!- 0.015 

(4.3 i ij.2) 1.0 1.194 +; - 0.027 1.0 
1.195 +/- 0.004 

Considerable variance reduction has been achieved in all examples, although 
only very simple techniques were used. Note that the estimator <i with the second 
set of parameters in Table I has the minimal variance possible within the pure 
importance-sampling procedure. The third set of parameters shows that the shift 
procedure (4.6) can make “importance sampling” more efficient. 

It is to be mentioned that various estimators should be compared first with 
respect to their confidence intervals and not with respect to the concrete values of 
their empirical means. We calculated, for instance, the estimators with the third set 
of parameters in Table I with another sample of 5000 independent trajectories and 
obtained the confidence intervals 0.643 +,‘- 0.008 and 0.639 +I- 0.008. respec- 
tively. 

6. CONCLUDING REM-ARKS 

The main advantage of our unbiased estimation scheme for functional integrals is 
that no systematic error is involved. Therefore the error analysis becomes much 
more easy, and can be performed by means of confidence intervals during the 
process of generation of independent samples of the estimator. 

In many cases unbiased estimators seem to be even more efficient in the following 
sense. Usual biased estimators correspond to the evaluation of an integral of finite 
but relatively high dimension. The unbiased estimation scheme can be interpreted 
as the evaluation of integrals of finite dimension, which is chosen at random by 
means of the length of the basic Markov chain. Then, the mean dimension equals 
the mean length of the trajectories of the Markov chain, which is rather small in 
our examples. 

Condition (3.1 j is essential for our algorithm. It excludes such functions C, which 
tend to -CC too fast. However, for positive functions c, we need only the existence 
of the object to be evaluated. In particular, no regularity requirement on c is 
necessary. The algorithm works for arbitrary Markov processes with an explicitly 
given transition function. In particular, inhomogeneous processes and processes 
with jump components are covered. 

Functional integrals of the form 

E exp X(u)) du giX(T)j 
> 
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appearing in more general Feynman-Kac formulas can be handled in a quite 
similar way as the integrals (1.2). The unbiased evaluation of integrals of the form 

*T 
c(u, )...) u,,, Wu,),..., ~(u,))du,..~du,, 

0 

n 2 1, G-analytic, is possible but would need more sophisticated variance reduction 
techniques. 

We carried out only the importance-sampling procedure in the framework of the 
von Neumann-Ulam scheme. In order to develop other variance reduction techni- 
ques it would be useful to consider this scheme as a part of the general Monte 
Carlo estimation theory for generalized principal values of integrals. In this connec- 
tion we refer to [27, 281 and [12, Chap. 61. 

Numerical methods for stochastic Wiener integrals, where the function c in (1.2) 
depends on random influences, have been introduced in [3] in connection with 
scattering in random media.The evaluation of such functional integrals seems to be 
a very promising field of application of our unbiased estimation scheme. 
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